Mycotherapy – Reishi (Ganoderma lucidum)


Reishi (Ganoderma lucidum), or Linghzi, is probably one of the world’s most popular medicinal mushrooms. Considered as the fungus of longevity in traditional Asian medicine, it is molecularly characterized by an extremely varied triterpene profile (particularly rich for a mushroom). Like all medicinal mushrooms, it also contains a polysaccharide moiety of interest. This richness in triterpenes makes Reishi one of the pillars of mycotherapy and brings it closer to adaptogenic activity (for more on the molecular definition of an adaptogen, see HERE) even if the polysaccharide fraction seems to play the central role in its virtues. Its recognized health benefits are multiple, and many studies even investigate its potential in advanced therapeutic contexts: oncology, Alzheimer’s, etc.

Like adaptogenic plants, Reishi seems, despite its effectiveness, to have few side effects or contraindications. This phenomenon is probably explained by the association of two of its characteristics: the diversity of its profile in active molecules (a thousand nudges is less painful than a single punch) and the fact that a significant part of its activity takes place via the intestinal microbiota (therefore, part of the effect is indirect and more diffuse and the impact on hepatic metabolism mechanisms is less stressed). As we will see later, this characteristic makes it possible to consider the use of Reishi in a clinical setting without increasing the risk of drug interaction too much, which is a major advantage.


The main phytonutrients of Reishi belong to the category of triterpenoids and, in particular, lanostanoids. The best known are ganoderic and lucidenic acids. These are, of course, not the only active constituents of Reishi, which moreover contains very many distinct triterpenoids, as well as proteoglycans, sterols, etc.

In addition, like most medicinal mushrooms, Reishi contains polysaccharides and, in particular, Beta-glucans. These Beta-glucans have also been extensively studied for their properties on human health. It should be noted that polysaccharides of fungal origin are distinguished from cereal polysaccharides by the nature of their structure, an aspect that gives them specific properties for human health (in particular at the immune level).


3.1. Reishi & microbiota

The benefits of Reishi on the balance of the intestinal microbiota have been widely demonstrated [1-3] but are not the most studied properties for this fungus. However, it seems judicious to approach them first, as recent data indicate that they are at the heart of its medicinal properties. Indeed, a regulatory virtue on the microbiota can lead to a better metabolic balance (carbohydrate and lipid), a reduction in stress, support of the immune defenses, etc.

Whether it is its polysaccharide fraction, considered a specific form of prebiotic [4-7], or ganoderic acids, which also seem to play a role in the balancing effect of Reishi [8-9], the data reporting a microbiotic impact are more and more numerous.

This regulatory effect appears particularly interesting in many aspects of human health. Reishi can thus promote metabolic balance via the microbiota [8-11] and even seems able to influence certain forms of cancer through it [12-13]. This last point brings us to the most studied therapeutic potential of Reishi.

3.2. Reishi & oncology

with cancerOncology is the therapeutic setting in which the use of Reishi seems to be the most studied. As mentioned previously, its action on the microbiota is not unrelated to it, but it also directly influences various physiological aspects.

Certain ganoderic acids seem to influence the phenomenon of apoptosis (thereby limiting tumor proliferation) [14-16] and limit tumor invasiveness (thereby limiting the capacity of the tumor to spread), in particular by regulating the tumor. metalloproteinases [17-18]. Finally, ganoderic acids also appear to promote the anti-tumor response of the immune system [19]. Simultaneously, the polysaccharide fraction of Reishi also contributes to this activity through comparable effects [20-23].

Among the cancers investigated, we find:

  • Lung cancers (ganoderic acids [24-27] & polysaccharides [28-30])
  • Breast cancers (ganoderic acids [31-34] & polysaccharides [35-36])
  • Prostate cancers (ganoderic acids [37-38] & polysaccharides [39-40])
  • Colon cancers (ganoderic acids [41] & polysaccharides [42-44])
  • Uterus cancers (ganoderic acids [45-47] & polysaccharides [48])
  • Liver cancers (ganoderic acids [49-50] & polysaccharides [51])

In all cases, ganoderic acids and polysaccharides seem to be involved (except for brain cancers where only the triterpene fraction seems to have been studied [52-53]). Such diversity suggests that Reishi potentially represents a real asset in supporting patients with cancer but also, and perhaps above all, of interest as a chemo-preventive agent in patients in remission. Other studies are necessary to ensure these results’ clinical validity, but it is clear that they are already extremely encouraging.

Finally, it should be noted that the previously mentioned effects of Reishi on the metabolic balance could also be involved in the oncological interest of this one. Indeed, tumors develop metabolic mechanisms intended to ensure a sufficient supply of energy increasing tumor proliferation. One of the best-known examples is the Warburg effect that Reishi seems to impact [41-54].

3.3. Infectious diseases

In the West, Reishi is classically recommended to deal with winter infections. If there is indeed scientific data to support this “anti-infectious” hypothesis, they are far from representing the most important part of the scientific literature on this fungus’ virtues. In this specific context, the proteoglycans’ interest in Reishi and their antiviral properties, mainly on herpes viruses, should be mentionned [55-57]. Properties that they seem to share with the polysaccharide fraction [58-59]. Concerning triterpenes; the activity has also been highlighted, in very preliminary studies, towards other viral types [60-63].

In fact, the major interest of Reishi in the context of winter disorders is mainly due to the immune support that it can offer, mainly through its regulatory power in the intestinal microbiota. There are indeed no more studies highlighting the interest of beta-glucans in this context (the bibliography is very abundant and should be the subject of a separate article).

3.4. Inflammation

With the aging of the population, health issues related to inflammatory mechanisms are now legion. In this context, ganoderic acids have shown their direct interest on multiple occasions, but reishi polysaccharides also seem to have an impact on in vivo models (probable microbiotic action):


  • In a neurological context, ganoderic acids seem to be of interest due to their ability to limit neuroinflammation [64-70]. This neuroprotective activity has also been investigated in the context of pathologies, such as Alzheimer’s [71-72]. While it is unlikely that the polysaccharide fraction is bioavailable in the brain, it should be noted that its consumption also appears attractive in the context of Alzheimer’s disease (in vivo evaluation on a murine model [73]) where it seems to favor neurogenesis. This promising effect is probably explained by a neurobiotic action (indirect action at the neurological level by effect on the microbiota).
  • In a pulmonary context, certain ganoderic acids have once again shown their interest in various models of inflammation and pulmonary fibrosis [74-76]. A study also seems to highlight an interest of the polysaccharide fraction in this context. Once again, it is probably an indirect effect on the microbiota’s inflammatory balance [77].
  • In a hepatic context, a few studies report the hepatoprotective benefit of certain ganoderic acids [78-79]. This virtue also seems to be shared by the polysaccharide fraction. Studies are even much more numerous for polysaccharides [80-85]. Such a hepatic tropism for the polysaccharide fraction, with demonstrated prebiotic benefits, obviously leads us to investigate these active ingredients’ interest in the context of glycemic metabolism.

3.5. Metabolism

Unsurprisingly, several studies report the benefit of Reishi polysaccharides on glycemic metabolism and in various models of diabetes [86-89]. One study also suggests that ganoderic acids may support this polysaccharide activity [90].

It will also be mentionned that the polysaccharide fraction seems to play a regulatory role on lipid metabolism as well [91-93].

3.6. Dermatology

Surprisingly enough, the active substances in Reishi also seem to be of interest in dermatology. Its skin benefits have been reported in various models, and studies show a real potential, particularly of the polysaccharide fraction [94-97]. However, ganoderic acids do not seem devoid of interest in this context [98].

Reishi is one of the pillars of traditional and modern mycotherapy. Its molecular profile rich in various active molecules, and its properties, probably makes it one of the medicinal mushrooms closest to adaptogenic roots like ginseng (Panax ginseng). Its interest in a wide range of areas related to health, associated with its apparent harmlessness, clearly predestines it for use in Medical Nutraceuticals or even in a clinical setting. Moreover, it is an additional opportunity to wonder if nutraceutical support for patients in remission could not become a particularly interesting public health tool.

[1] Delzenne NM, Bindels LB (2015) – “Gut microbiota: Ganoderma lucidum, a new prebiotic agent to treat obesity?” Nat Rev Gastroenterol Hepatol. 2015 Oct;12(10):553-4. doi: 10.1038/nrgastro.2015.137. Epub 2015 Aug 18.

[2] Chang CJ, Lin CS, Lu CC, Martel J, Ko YF, Ojcius DM, Tseng SF, Wu TR, Chen YY, Young JD, Lai HC (2015) – “Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota.” Nat Commun. 2015 Jun 23;6:7489. doi: 10.1038/ncomms8489.

[3]Meneses ME, Martínez-Carrera D, Torres N, Sánchez-Tapia M, Aguilar-López M, Morales P, Sobal M, Bernabé T, Escudero H, Granados-Portillo O, Tovar AR (2016) – “Hypocholesterolemic Properties and Prebiotic Effects of Mexican Ganoderma lucidum in C57BL/6 Mice.” PLoS One. 2016 Jul 20;11(7):e0159631. doi: 10.1371/journal.pone.0159631. eCollection 2016.

[4] Xie J, Liu Y, Chen B, Zhang G, Ou S, Luo J, Peng X (2019) – “Ganoderma lucidum polysaccharide improves rat DSS-induced colitis by altering cecal microbiota and gene expression of colonic epithelial cells.” Food Nutr Res. 2019 Feb 12;63. doi: 10.29219/fnr.v63.1559. eCollection 2019.

[5] Jin M, Zhang H, Wang J, Shao D, Yang H, Huang Q, Shi J, Xu C, Zhao K (2018) – “Response of intestinal metabolome to polysaccharides from mycelia of Ganoderma lucidum.” Int J Biol Macromol. 2019 Feb 1;122:723-731. doi: 10.1016/j.ijbiomac.2018.10.224. Epub 2018 Nov 2.

[6] Jin M, Zhu Y, Shao D, Zhao K, Xu C, Li Q, Yang H, Huang Q, Shi J (2017) – “Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.” Int J Biol Macromol. 2017 Jan;94(Pt A):1-9. doi: 10.1016/j.ijbiomac.2016.09.099. Epub 2016 Sep 29.

[7] Li K, Zhuo C, Teng C, Yu S, Wang X, Hu Y, Ren G, Yu M, Qu J (2016) – “Effects of Ganoderma lucidum polysaccharides on chronic pancreatitis and intestinal microbiota in mice.” Int J Biol Macromol. 2016 Dec;93(Pt A):904-912. doi: 10.1016/j.ijbiomac.2016.09.029. Epub 2016 Sep 9.

[8] Guo WL , Guo JB , Liu BY , Lu JQ , Chen M , Liu B , Bai WD , Rao PF , Ni L , Lv XC (2020) – “Ganoderic acid A from Ganoderma lucidum ameliorates lipid metabolism and alters gut microbiota composition in hyperlipidemic mice fed a high-fat diet.” Food Funct. 2020 Aug 1;11(8):6818-6833. doi: 10.1039/d0fo00436g. Epub 2020 Jul 20.

[9] Guo WL , Pan YY , Li L , Li TT , Liu B , Lv XC (2018) – “Ethanol extract of Ganoderma lucidum ameliorates lipid metabolic disorders and modulates the gut microbiota composition in high-fat diet fed rats.” Food Funct. 2018 Jun 20;9(6):3419-3431. doi: 10.1039/c8fo00836a.

[10] Chen M, Xiao D, Liu W, Song Y, Zou B, Li L, Li P, Cai Y, Liu D, Liao Q, Xie Z (2020) – “Intake of Ganoderma lucidum polysaccharides reverses the disturbed gut microbiota and metabolism in type 2 diabetic rats.” Int J Biol Macromol. 2020 Jul 15;155:890-902. doi: 10.1016/j.ijbiomac.2019.11.047. Epub 2019 Nov 9.

[11] Ren L (2019) – “Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats.” Saudi J Biol Sci. 2019 Dec;26(8):1961-1972. doi: 10.1016/j.sjbs.2019.07.005. Epub 2019 Jul 6.

[12] Su J, Su L, Li D, Shuai O, Zhang Y, Liang H, Jiao C, Xu Z, Lai Y, Xie Y (2018) – “Antitumor Activity of Extract From the Sporoderm-Breaking Spore of Ganoderma lucidum: Restoration on Exhausted Cytotoxic T Cell With Gut Microbiota Remodeling.” Front Immunol. 2018 Jul 31;9:1765. doi: 10.3389/fimmu.2018.01765. eCollection 2018.

[13] Su J, Li D, Chen Q, Li M, Su L, Luo T, Liang D, Lai G, Shuai O, Jiao C, Wu Q, Xie Y, Zhou X (2018) – “Anti-breast Cancer Enhancement of a Polysaccharide From Spore of Ganoderma lucidum With Paclitaxel: Suppression on Tumor Metabolism With Gut Microbiota Reshaping.” Front Microbiol. 2018 Dec 17;9:3099. doi: 10.3389/fmicb.2018.03099. eCollection 2018.

[14] Gill BS, Navgeet, Mehra R, Kumar V, Kumar S (2018) – “Ganoderic acid, lanostanoid triterpene: a key player in apoptosis.” Invest New Drugs. 2018 Feb;36(1):136-143. doi: 10.1007/s10637-017-0526-0. Epub 2017 Oct 28.

[15] Li CH, Chen PY, Chang UM, Kan LS, Fang WH, Tsai KS, Lin SB (2005) – “Ganoderic acid X, a lanostanoid triterpene, inhibits topoisomerases and induces apoptosis of cancer cells.” Life Sci. 2005 Jun 3;77(3):252-65. doi: 10.1016/j.lfs.2004.09.045. Epub 2005 Feb 25.

[16] Chen NH, Zhong JJ (2011) – “p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells.” Phytomedicine. 2011 Jun 15;18(8-9):719-25. doi: 10.1016/j.phymed.2011.01.011. Epub 2011 Feb 25.

[17] Chen NH, Liu JW, Zhong JJ (2010) – “Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression.” Pharmacol Rep. 2010 Jan-Feb;62(1):150-63. doi: 10.1016/s1734-1140(10)70252-8.

[18] Chen NH, Liu JW, Zhong JJ (2008) – “Ganoderic acid Me inhibits tumor invasion through down-regulating matrix metalloproteinases 2/9 gene expression.” J Pharmacol Sci. 2008 Oct;108(2):212-6. doi: 10.1254/jphs.sc0080019.

[19] Wang G, Zhao J, Liu J, Huang Y, Zhong JJ, Tang W (2007) – “Enhancement of IL-2 and IFN-gamma expression and NK cells activity involved in the anti-tumor effect of ganoderic acid Me in vivo.” Int Immunopharmacol. 2007 Jun;7(6):864-70. doi: 10.1016/j.intimp.2007.02.006. Epub 2007 Mar 13.

[20] Sohretoglu D, Huang S (2018) – “Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.” Anticancer Agents Med Chem. 2018;18(5):667-674. doi: 10.2174/1871520617666171113121246.

[21] Ferreira IC, Heleno SA, Reis FS, Stojkovic D, Queiroz MJ, Vasconcelos MH, Sokovic M (2015) – “Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.” Phytochemistry. 2015 Jun;114:38-55. doi: 10.1016/j.phytochem.2014.10.011. Epub 2014 Nov 5.

[22] Pan K, Jiang Q, Liu G, Miao X, Zhong D (2013) – “Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities.” Int J Biol Macromol. 2013 Apr;55:301-6. doi: 10.1016/j.ijbiomac.2013.01.022. Epub 2013 Jan 29.

[23] Wang SY, Hsu ML, Hsu HC, Tzeng CH, Lee SS, Shiao MS, Ho CK (1997) – “The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes.” Int J Cancer. 1997 Mar 17;70(6):699-705. doi: 10.1002/(sici)1097-0215(19970317)70:6<699::aid-

[24] Xia J, Dai L, Wang L, Zhu J (2020) – “Ganoderic acid DM induces autophagic apoptosis in non-small cell lung cancer cells by inhibiting the PI3K/Akt/mTOR activity.” Chem Biol Interact. 2020 Jan 25;316:108932. doi: 10.1016/j.cbi.2019.108932. Epub 2019 Dec 23.

[25] Gill BS, Kumar S, Navgeet (2017) – “Ganoderic acid targeting nuclear factor erythroid 2-related factor 2 in lung cancer.” Tumour Biol. 2017 Mar;39(3):1010428317695530. doi: 10.1177/1010428317695530.

[26] Que Z, Zou F, Zhang A, Zheng Y, Bi L, Zhong J, Tian J, Liu J (2014) – “Ganoderic acid Me induces the apoptosis of competent T cells and increases the proportion of Treg cells through enhancing the expression and activation of indoleamine 2,3-dioxygenase in mouse lewis lung cancer cells.” Int Immunopharmacol. 2014 Nov;23(1):192-204. doi: 10.1016/j.intimp.2014.08.001. Epub 2014 Aug 17.

[27] Tang W, Liu JW, Zhao WM, Wei DZ, Zhong JJ (2006) – “Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells.” Life Sci. 2006 Dec 23;80(3):205-11. doi: 10.1016/j.lfs.2006.09.001. Epub 2006 Sep 6.

[28] Sun LX, Li WD, Lin ZB, Duan XS, Li XF, Yang N, Lan TF, Li M, Sun Y, Yu M, Lu J (2014) – “Protection against lung cancer patient plasma-induced lymphocyte suppression by Ganoderma lucidum polysaccharides.” Cell Physiol Biochem. 2014;33(2):289-99. doi: 10.1159/000356669. Epub 2014 Jan 31.

[29] Gao Y, Tang W, Dai X, Gao H, Chen G, Ye J, Chan E, Koh HL, Li X, Zhou S (2005) – “Effects of water-soluble Ganoderma lucidum polysaccharides on the immune functions of patients with advanced lung cancer.” J Med Food. 2005 Summer;8(2):159-68. doi: 10.1089/jmf.2005.8.159.

[30] Cao QZ, Lin ZB (2006) – “Ganoderma lucidum polysaccharides peptide inhibits the growth of vascular endothelial cell and the induction of VEGF in human lung cancer cell.” Life Sci. 2006 Feb 23;78(13):1457-63. doi: 10.1016/j.lfs.2005.07.017. Epub 2005 Nov 2.

[31] Yang Y, Zhou H, Liu W, Wu J, Yue X, Wang J, Quan L, Liu H, Guo L, Wang Z, Lian X, Zhang Q (2018) – “Ganoderic acid A exerts antitumor activity against MDA-MB-231 human breast cancer cells by inhibiting the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway.” Oncol Lett. 2018 Nov;16(5):6515-6521. doi: 10.3892/ol.2018.9475. Epub 2018 Sep 21.

[32] Li F, Wang Y, Wang X, Li J, Cui H, Niu M (2012) – “Ganoderic acids suppress growth and angiogenesis by modulating the NF-kappaB signaling pathway in breast cancer cells.” Int J Clin Pharmacol Ther. 2012 Oct;50(10):712-21. doi: 10.5414/CP201663.

[33] Wu GS, Lu JJ, Guo JJ, Li YB, Tan W, Dang YY, Zhong ZF, Xu ZT, Chen XP, Wang YT (2012) – “Ganoderic acid DM, a natural triterpenoid, induces DNA damage, G1 cell cycle arrest and apoptosis in human breast cancer cells.” Fitoterapia. 2012 Mar;83(2):408-14. doi: 10.1016/j.fitote.2011.12.004. Epub 2011 Dec 9.

[34] Jiang J, Grieb B, Thyagarajan A, Sliva D (2008) – “Ganoderic acids suppress growth and invasive behavior of breast cancer cells by modulating AP-1 and NF-kappaB signaling.” Int J Mol Med. 2008 May;21(5):577-84.

[35] Tsao SM, Hsu HY (2016) – “Fucose-containing fraction of Ling-Zhi enhances lipid rafts-dependent ubiquitination of TGFbeta receptor degradation and attenuates breast cancer tumorigenesis.” Sci Rep. 2016 Nov 10;6:36563. doi: 10.1038/srep36563.

[36] Shang D, Li Y, Wang C, Wang X, Yu Z, Fu X (2011) – “A novel polysaccharide from Se-enriched Ganoderma lucidum induces apoptosis of human breast cancer cells.” Oncol Rep. 2011 Jan;25(1):267-72.

[37] Gill BS, Kumar S, Navgeet (2016) – “Evaluating anti-oxidant potential of ganoderic acid A in STAT 3 pathway in prostate cancer.” Mol Biol Rep. 2016 Dec;43(12):1411-1422. doi: 10.1007/s11033-016-4074-z. Epub 2016 Sep 17.

[38] Johnson BM, Doonan BP, Radwan FF, Haque A (2010) – “Ganoderic Acid DM: An Alternative Agent for the Treatment of Advanced Prostate Cancer.” Open Prost Cancer J. 2010 Jan 1;3:78-85. doi: 10.2174/1876822901003010078.

[39] Zhao X, Zhou D, Liu Y, Li C, Zhao X, Li Y, Li W (2018) – “Ganoderma lucidum polysaccharide inhibits prostate cancer cell migration via the protein arginine methyltransferase 6 signaling pathway.” Mol Med Rep. 2018 Jan;17(1):147-157. doi: 10.3892/mmr.2017.7904. Epub 2017 Oct 26.

[40] Wu K, Na K, Chen D, Wang Y, Pan H, Wang X (2018) – “Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells.” Int J Oncol. 2018 Dec;53(6):2356-2368. doi: 10.3892/ijo.2018.4578. Epub 2018 Sep 28.

[41] Liu Z, Li L, Xue B (2018) – « Effect of ganoderic acid D on colon cancer Warburg effect: Role of SIRT3/cyclophilin D.” Eur J Pharmacol. 2018 Apr 5;824:72-77. doi: 10.1016/j.ejphar.2018.01.026. Epub 2018 Jan 31.

[42] Jing Hui Bai , Jian Xu , Jian Zhao , Rui Zhang (2020)  “Ganoderma lucidum Polysaccharide Enzymatic Hydrolysate Suppresses the Growth of Human Colon Cancer Cells via Inducing Apoptosis” Cell Transplant. Jan-Dec 2020;29:963689720931435. doi: 10.1177/0963689720931435.

[43] Liang ZE, Yi YJ, Guo YT, Wang RC, Hu QL, Xiong XY (2015) – “Inhibition of migration and induction of apoptosis in LoVo human colon cancer cells by polysaccharides from Ganoderma lucidum.” Mol Med Rep. 2015 Nov;12(5):7629-36. doi: 10.3892/mmr.2015.4345. Epub 2015 Sep 22.

[44] Liang Z, Guo YT, Yi YJ, Wang RC, Hu QL, Xiong XY (2014) – “Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells.” Asian Pac J Cancer Prev. 2014;15(9):3981-6. doi: 10.7314/apjcp.2014.15.9.3981.

[45] Liu RM, Li YB, Liang XF, Liu HZ, Xiao JH, Zhong JJ (2015) – “Structurally related ganoderic acids induce apoptosis in human cervical cancer HeLa cells: Involvement of oxidative stress and antioxidant protective system.” Chem Biol Interact. 2015 Oct 5;240:134-44. doi: 10.1016/j.cbi.2015.08.005. Epub 2015 Aug 15.

[46] Liu RM, Zhong JJ (2011) – “Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells.” Phytomedicine. 2011 Mar 15;18(5):349-55. doi: 10.1016/j.phymed.2010.08.019. Epub 2010 Oct 29.

[47] Yue QX, Song XY, Ma C, Feng LX, Guan SH, Wu WY, Yang M, Jiang BH, Liu X, Cui YJ, Guo DA (2010) – “Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells.” Phytomedicine. 2010 Jul;17(8-9):606-13. doi: 10.1016/j.phymed.2009.12.013. Epub 2010 Jan 25.

[48] Jun Zhu, Jia Xu, Ling-Ling Jiang, Jin-Qun Huang, Jin-Yu Yan, Yi-Wan Chen, Qian Yang (2019) – “Improved antitumor activity of cisplatin combined with Ganoderma lucidum polysaccharides in U14 cervical carcinoma-bearing mice” Kaohsiung J Med Sci. 2019 Apr;35(4):222-229. doi: 10.1002/kjm2.12020. Epub 2019 Apr 8.

[49] Wang X, Sun D, Tai J, Wang L (2017) – “Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells.” Mol Med Rep. 2017 Oct;16(4):3894-3900. doi: 10.3892/mmr.2017.7048. Epub 2017 Jul 21

[50] Yao X, Li G, Xu H, Lü C (2012) – « Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin.” Planta Med. 2012 Nov;78(16):1740-8. doi: 10.1055/s-0032-1315303. Epub 2012 Sep 7.

[51] Li A, Shuai X, Jia Z, Li H, Liang X, Su D, Guo W (2015) – “Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b.” J Transl Med. 2015 Mar 26;13:100. doi: 10.1186/s12967-015-0465-5.

[52] Das A, Alshareef M, Henderson F Jr, Martinez Santos JL, Vandergrift WA 3rd, Lindhorst SM, Varma AK, Infinger L, Patel SJ, Cachia D (2020) – “Ganoderic acid A/DM-induced NDRG2 over-expression suppresses high-grade meningioma growth.” Clin Transl Oncol. 2020 Jul;22(7):1138-1145. doi: 10.1007/s12094-019-02240-6. Epub 2019 Nov 15.

[53] Cheng Y, Xie P (2019) – “Ganoderic acid A holds promising cytotoxicity on human glioblastoma mediated by incurring apoptosis and autophagy and inactivating PI3K/AKT signaling pathway.” J Biochem Mol Toxicol. 2019 Nov;33(11):e22392. doi: 10.1002/jbt.22392. Epub 2019 Sep 10.

[54] Su J, Li D, Chen Q, Li M, Su L, Luo T, Liang D, Lai G, Shuai O, Jiao C, Wu Q, Xie Y, Zhou X (2018) – “Anti-breast Cancer Enhancement of a Polysaccharide From Spore of Ganoderma lucidum With Paclitaxel: Suppression on Tumor Metabolism With Gut Microbiota Reshaping.” Front Microbiol. 2018 Dec 17;9:3099. doi: 10.3389/fmicb.2018.03099. eCollection 2018.

[55] Li Z, Liu J, Zhao Y (2005) – “Possible mechanism underlying the antiherpetic activity of a proteoglycan isolated from the mycelia of Ganoderma lucidum in vitro.” J Biochem Mol Biol. 2005 Jan 31;38(1):34-40. doi: 10.5483/bmbrep.2005.38.1.034.

[56] Kim YS, Eo SK, Oh KW, Lee C, Han SS (2000) – “Antiherpetic activities of acidic protein bound polysacchride isolated from Ganoderma lucidum alone and in combinations with interferons.” J Ethnopharmacol. 2000 Oct;72(3):451-8. doi: 10.1016/s0378-8741(00)00263-4.

[57] Eo SK, Kim YS, Lee CK, Han SS (1999) – “Antiherpetic activities of various protein bound polysaccharides isolated from Ganoderma lucidum.” J Ethnopharmacol. 1999 Dec 15;68(1-3):175-81. doi: 10.1016/s0378-8741(99)00086-0.

[58] Zheng DS, Chen LS (2017) – “Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.” Exp Ther Med. 2017 Oct;14(4):3273-3278. doi: 10.3892/etm.2017.4883. Epub 2017 Aug 3.

[59] Iwatsuki K, Akihisa T, Tokuda H, Ukiya M, Oshikubo M, Kimura Y, Asano T, Nomura A, Nishino H (2003) – “Lucidenic acids P and Q, methyl lucidenate P, and other triterpenoids from the fungus Ganoderma lucidum and their inhibitory effects on Epstein-Barr virus activation.” J Nat Prod. 2003 Dec;66(12):1582-5. doi: 10.1021/np0302293.

[60] Zhang W, Tao J, Yang X, Yang Z, Zhang L, Liu H, Wu K, Wu J (2014) – “Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection.” Biochem Biophys Res Commun. 2014 Jul 4;449(3):307-12. doi: 10.1016/j.bbrc.2014.05.019. Epub 2014 May 15.

[61] Bharadwaj S, Lee KE, Dwivedi VD, Yadava U, Panwar A, Lucas SJ, Pandey A, Kang SG (2019) – “Discovery of Ganoderma lucidum triterpenoids as potential inhibitors against Dengue virus NS2B-NS3 protease.” Sci Rep. 2019 Dec 13;9(1):19059. doi: 10.1038/s41598-019-55723-5.

[62] Li YQ, Wang SF (2006) – “Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum.” Biotechnol Lett. 2006 Jun;28(11):837-41. doi: 10.1007/s10529-006-9007-9. Epub 2006 May 31.

[63] Zhu Q, Bang TH, Ohnuki K, Sawai T, Sawai K, Shimizu K (2015) – “Inhibition of neuraminidase by Ganoderma triterpenoids and implications for neuraminidase inhibitor design.” Sci Rep. 2015 Aug 26;5:13194. doi: 10.1038/srep13194.

[64] Yu ZR, Jia WH, Liu C, Wang HQ, Yang HG, He GR, Chen RY, Du GH (2020) – “Ganoderic acid A protects neural cells against NO stress injury in vitro via stimulating beta adrenergic receptors.” Acta Pharmacol Sin. 2020 Apr;41(4):516-522. doi: 10.1038/s41401-020-0356-z. Epub 2020 Feb 11.

[65] Sheng F, Zhang L, Wang S, Yang L, Li P (2019) – “Deacetyl Ganoderic Acid F Inhibits LPS-Induced Neural Inflammation via NF-kappaB Pathway Both In Vitro and In Vivo.” Nutrients. 2019 Dec 27;12(1):85. doi: 10.3390/nu12010085.

[66] Chang Y, Kong R (2019) – “Ganoderic acid A alleviates hypoxia-induced apoptosis, autophagy, and inflammation in rat neural stem cells through the PI3K/AKT/mTOR pathways.” Phytother Res. 2019 May;33(5):1448-1456. doi: 10.1002/ptr.6336. Epub 2019 Mar 6.

[67] Jiang ZM, Qiu HB, Wang SQ, Guo J, Yang ZW, Zhou SB (2018) – « Ganoderic acid A potentiates the antioxidant effect and protection of mitochondrial membranes and reduces the apoptosis rate in primary hippocampal neurons in magnesium free medium.” Pharmazie. 2018 Feb 1;73(2):87-91. doi: 10.1691/ph.2018.7108.

[68] Chi B, Wang S, Bi S, Qin W, Wu D, Luo Z, Gui S, Wang D, Yin X, Wang F (2018) – “Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures.” Exp Ther Med. 2018 Jan;15(1):847-853. doi: 10.3892/etm.2017.5472. Epub 2017 Nov 8.

[69] Yang ZW, Wu F, Zhang SL (2016) – “Effects of ganoderic acids on epileptiform discharge hippocampal neurons: insights from alterations of BDNF, TRPC3 and apoptosis.” Pharmazie. 2016 Jun;71(6):340-4.

[70] Quan Y, Ma A, Yang B (2019) – “Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Brain Injury.” Adv Exp Med Biol. 2019;1182:159-180. doi: 10.1007/978-981-32-9421-9_6.

[71] Yu N, Huang Y, Jiang Y, Zou L, Liu X, Liu S, Chen F, Luo J, Zhu Y (2020) – “Ganoderma lucidum Triterpenoids (GLTs) Reduce Neuronal Apoptosis via Inhibition of ROCK Signal Pathway in APP/PS1 Transgenic Alzheimer’s Disease Mice.” Oxid Med Cell Longev. 2020 Jan 28;2020:9894037. doi: 10.1155/2020/9894037. eCollection 2020.

[72] Lai G, Guo Y, Chen D, Tang X, Shuai O, Yong T, Wang D, Xiao C, Zhou G, Xie Y, Yang BB, Wu Q (2019) – “Alcohol Extracts From Ganoderma lucidum Delay the Progress of Alzheimer’s Disease by Regulating DNA Methylation in Rodents.” Front Pharmacol. 2019 Mar 26;10:272. doi: 10.3389/fphar.2019.00272. eCollection 2019.

[73] Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, Wang P, Zhao C, Yao J, Xia P, Pei G (2017) – “Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer’s Disease.” Stem Cell Reports. 2017 Jan 10;8(1):84-94. doi: 10.1016/j.stemcr.2016.12.007.

[74] Wen G, Li T, He H, Zhou X, Zhu J (2020) – “Ganoderic Acid A Inhibits Bleomycin-Induced Lung Fibrosis in Mice.” Pharmacology. 2020;105(9-10):568-575. doi: 10.1159/000505297. Epub 2020 Jan 15.

[75] Shi J, Wang H, Liu J, Zhang Y, Luo J, Li Y, Yang C, Jiang J (2020) – “Ganoderic acid B attenuates LPS-induced lung injury. » Int Immunopharmacol. 2020 Nov;88:106990. doi: 10.1016/j.intimp.2020.106990. Epub 2020 Sep 22.

[76] Wan B, Li Y, Sun S, Yang Y, Lv Y, Wang L, Song M, Chen M, Wu C, Pan H, Zhang X (2019) – “Ganoderic acid A attenuates lipopolysaccharide-induced lung injury in mice.” Biosci Rep. 2019 May 23;39(5):BSR20190301. doi: 10.1042/BSR20190301. Print 2019 May 31.

[77] Chen J, Shi Y, He L, Hao H, Wang B, Zheng Y, Hu C (2016) – “Protective roles of polysaccharides from Ganoderma lucidum on bleomycin-induced pulmonary fibrosis in rats.” Int J Biol Macromol. 2016 Nov;92:278-281. doi: 10.1016/j.ijbiomac.2016.07.005. Epub 2016 Jul 2.

[78] Lixin X, Lijun Y, Songping H (2019) – “Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice.” J Biochem Mol Toxicol. 2019 Apr;33(4):e22271. doi: 10.1002/jbt.22271. Epub 2018 Dec 1.

[79] Wu H, Tang S, Huang Z, Zhou Q, Zhang P, Chen Z (2016) – “Hepatoprotective Effects and Mechanisms of Action of Triterpenoids from Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) on α-Amanitin-Induced Liver Injury in Mice.” Int J Med Mushrooms. 2016;18(9):841-850. doi: 10.1615/IntJMedMushrooms.v18.i9.80.

[80] Susilo RJK, Winarni D, Husen SA, Hayaza S, Punnapayak H, Wahyuningsih SPA, Sajidah ES, Darmanto W (2019) – “Hepatoprotective effect of crude polysaccharides extracted from Ganoderma lucidum against carbon tetrachloride-induced liver injury in mice.” Vet World. 2019 Dec;12(12):1987-1991. doi: 10.14202/vetworld.2019.1987-1991. Epub 2019 Dec 17.

[81] Chen YS, Chen QZ, Wang ZJ, Hua C (2019) – “Anti-Inflammatory and Hepatoprotective Effects of Ganoderma lucidum Polysaccharides against Carbon Tetrachloride-Induced Liver Injury in Kunming Mice.” Pharmacology. 2019;103(3-4):143-150. doi: 10.1159/000493896. Epub 2019 Jan 23.

[82] Qiu Z, Zhong D, Yang B (2019) – « Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Liver Injury.” Adv Exp Med Biol. 2019;1182:217-242. doi: 10.1007/978-981-32-9421-9_9.

[83] Li HN, Zhao LL, Zhou DY, Chen DQ (2020) – “Ganoderma Lucidum Polysaccharides Ameliorates Hepatic Steatosis and Oxidative Stress in db/db Mice via Targeting Nuclear Factor E2 (Erythroid-Derived 2)-Related Factor-2/Heme Oxygenase-1 (HO-1) Pathway.” Med Sci Monit. 2020 Apr 4;26:e921905. doi: 10.12659/MSM.921905.

[84] Liu Y, Zhang C, Du J, Jia R, Cao L, Jeney G, Teraoka H, Xu P, Yin G (2017) – “Protective effect of Ganoderma lucidum polysaccharide against carbon tetrachloride-induced hepatic damage in precision-cut carp liver slices.” Fish Physiol Biochem. 2017 Oct;43(5):1209-1221. doi: 10.1007/s10695-016-0333-0. Epub 2017 Jul 5.

[85] Zhang GL, Wang YH, Ni W, Teng HL, Lin ZB (2002) – “Hepatoprotective role of Ganoderma lucidum polysaccharide against BCG-induced immune liver injury in mice.” World J Gastroenterol. 2002 Aug;8(4):728-33. doi: 10.3748/wjg.v8.i4.728.

[86] Xiao C, Wu Q, Zhang J, Xie Y, Cai W, Tan J (2017) – “Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice.” J Ethnopharmacol. 2017 Jan 20;196:47-57. doi: 10.1016/j.jep.2016.11.044. Epub 2016 Nov 27.

[87] Zheng J, Yang B, Yu Y, Chen Q, Huang T, Li D (2012) – « Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting beta-cells.” Comb Chem High Throughput Screen. 2012 Aug;15(7):542-50. doi: 10.2174/138620712801619168.

[88] Xiao C, Wu QP, Cai W, Tan JB, Yang XB, Zhang JM (2012) – “Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice.” Arch Pharm Res. 2012 Oct;35(10):1793-801. doi: 10.1007/s12272-012-1012-z. Epub 2012 Nov 9.

[89] Li F, Zhang Y, Zhong Z (2011) – « Antihyperglycemic effect of ganoderma lucidum polysaccharides on streptozotocin-induced diabetic mice.” Int J Mol Sci. 2011;12(9):6135-45. doi: 10.3390/ijms12096135. Epub 2011 Sep 20.

[90] Zhu J, Jin J, Ding J, Li S, Cen P, Wang K, Wang H, Xia J (2018) – “Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway.” Chem Biol Interact. 2018 Jun 25;290:77-87. doi: 10.1016/j.cbi.2018.05.014. Epub 2018 May 29.

[91] Xu Y, Zhang X, Yan XH, Zhang JL, Wang LY, Xue H, Jiang GC, Ma XT, Liu XJ (2019) – “Characterization, hypolipidemic and antioxidant activities of degraded polysaccharides from Ganoderma lucidum.” Int J Biol Macromol. 2019 Aug 15;135:706-716. doi: 10.1016/j.ijbiomac.2019.05.166. Epub 2019 May 23.

[92] Liang Z, Yuan Z, Li G, Fu F, Shan Y (2018) – “Hypolipidemic, Antioxidant, and Antiapoptotic Effects of Polysaccharides Extracted from Reishi Mushroom, Ganoderma lucidum (Leysser: Fr) Karst, in Mice Fed a High-Fat Diet.” J Med Food. 2018 Dec;21(12):1218-1227. doi: 10.1089/jmf.2018.4182. Epub 2018 Sep 5.

[93] Wu S (2018) – “Hypolipidaemic and anti-lipidperoxidant activities of Ganoderma lucidum polysaccharide.” Int J Biol Macromol. 2018 Oct 15;118(Pt B):2001-2005. doi: 10.1016/j.ijbiomac.2018.07.082. Epub 2018 Jul 22.

[94] Yin Z, Yang B, Ren H (2019)  “Preventive and Therapeutic Effect of Ganoderma (Lingzhi) on Skin Diseases and Care.” Adv Exp Med Biol. 2019;1182:311-321. doi: 10.1007/978-981-32-9421-9_14.

[95] Hu S, Huang J, Pei S, Ouyang Y, Ding Y, Jiang L, Lu J, Kang L, Huang L, Xiang H, Xiao R, Zeng Q, Chen J. (2019) – “Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways.” J Cell Physiol. 2019 May;234(5):7330-7340. doi: 10.1002/jcp.27492. Epub 2018 Oct 26.

[96] Zeng Q, Zhou F, Lei L, Chen J, Lu J, Zhou J, Cao K, Gao L, Xia F, Ding S, Huang L, Xiang H, Wang J, Xiao Y, Xiao R, Huang J (2017) – “Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging.” Mol Med Rep. 2017 Jan;15(1):111-116. doi: 10.3892/mmr.2016.6026. Epub 2016 Dec 12.

[97] Jiang L, Huang J, Lu J, Hu S, Pei S, Ouyang Y, Ding Y, Hu Y, Kang L, Huang L, Xiang H, Zeng Q, Liu L, Chen J, Zeng Q (2019) – “Ganoderma lucidum polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway.” J Cell Physiol. 2019 Dec;234(12):22799-22808. doi: 10.1002/jcp.28844. Epub 2019 May 21.

[98] Abate M, Pepe G, Randino R, Pisanti S, Basilicata MG, Covelli V, Bifulco M, Cabri W, D’Ursi AM, Campiglia P, Rodriquez M (2020) – “Ganoderma lucidum Ethanol Extracts Enhance Re-Epithelialization and Prevent Keratinocytes from Free-Radical Injury.” Pharmaceuticals (Basel). 2020 Aug 29;13(9):224. doi: 10.3390/ph13090224.