Is Red Sage a natural alternative to corticoids ?


As discussed in previous articles, Red sage (Salvia miltiorrhiza) and its active constituents have been identified as anti-inflammatory agents in numerous contexts like cardiovascular conditions (see the article here) and neurological health (see the article here). Among the therapeutic areas where such an anti-inflammatory effect could be useful, Articular inflammation [1-4] and Respiratory inflammation [5-10] are particularly well documented. These properties could be explained by intricate molecular effects [11-16] involving inhibition of multiple pathways like PI3K/Akt/mTOR, MAPKs/p38 and NF-kappaB. These pathway modulations are partially reminiscent of corticosteroids. 

These similarities beg the question of a possible use of Salvia miltiorrhiza as a natural anti-inflammatory active and maybe even as an alternative to corticoids in some cases. More specifically, since tanshinones are lipophilic active consistuents of Red sage root, the opportunity of a topical use could be considered both in rhumatology and dermatology.


For instance, the positive impact of red sage on arthritis has been identified on in vitro and in vivo models [1-4]. This virtue could be explain by the activity of tanshinone IIA [17-21] and Cryptotanshinone [22-27] which have both been highlighted as effective in diverse models of arthritis (including osteoarthritis and rheumatoid arthritis) too. Considering the previously mentioned effects on molecular cascades like PI3K/Akt/mTOR, NK-kappaB, and STAT-3, these results are not surprising but suggest that red sage is an innovative lead for the natural health in a joints inflammation context.

This health potential also invites to consider combinations with other natural molecules that are beneficial for joints health, like topical application β-caryophyllene [28] (from Copaifera officinalis or Piper nigrum), oral administration of Curcumin [29] (from Curcuma longa) or other polyphenols [30].


Tanshinones are lipophilic anti-inflammatory molecules with dermal absorption, which makes them of peculiar interest for potential dermatologic applications. It should be noted that Cryptotanshinone inhibits STAT-3, a key element in skin conditions like atopic dermatitis and psoriasis. In fact, Cryptotanshinone has been identified as effective in a psoriatic skin model (IMQ-induced) [31] and seems also of great interest in atopic dermatitis context [32]. For psoriasis, a combination with Ar-turmerone [32] (from Curcuma longa essential oil) or Baicalin [33] (from Scutellaria baicalensis root) could be an interesting lead for innovative natural solutions.

The inhibition of STAT-3 can also have a positive impact on fibrosis risks during wound healing [34-35]. A combination with other natural molecules with benefits for wound healing like Centella asiatica extract [36] could also generates effective results.

Due to the anti-inflammatory properties and STAT-3 inhibition activity, topical application of red sage root extract with high concentration of cryptotanshinone, could be a very innovative tool in specific conditions such as Joints inflammation or Psoriasis. The health potential for other skin conditions like eczema or atopic dermatitis is also particularly promising. In the same time, the oral administration could also be of interest for these health problematics since, originally, this medicinal plant is widely used through oral administration (mainly for cardiovascular health). Anyway, the ever growing scientific knowledge on red sage and its active constituents, is clearly a signal asking for more research and interest of natural health industry.

[1] Xu X, Lv H, Li X, Su H, Zhang X, Yang J (2018) – « Danshen attenuates cartilage injuries in osteoarthritis in vivo and in vitro by activating JAK2/STAT3 and AKT pathways. » Exp Anim. 2018 May 10;67(2):127-137. doi: 10.1538/expanim.17-0062. Epub 2017 Oct 31.
[2] Xu X, Lv H, Li X, Su H, Zhang X, Yang J (2017) – « Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro. » Biochem Cell Biol. 2017 Dec;95(6):644-651. doi: 10.1139/bcb-2017-0025. Epub 2017 Jun 29.
[3] Liu QS, Luo XY, Jiang H, Xing Y, Yang MH, Yuan GH, Tang Z, Wang H (2015) – « Salvia miltiorrhiza injection restores apoptosis of fibroblast-like synoviocytes cultured with serum from patients with rheumatoid arthritis. » Mol Med Rep. 2015 Feb;11(2):1476-82. doi: 10.3892/mmr.2014.2779. Epub 2014 Oct 27.
[4] Jiang WY, Jeon BH, Kim YC, Lee SH, Sohn DH, Seo GS (2013) – “PF2401-SF, standardized fraction of Salvia miltiorrhiza shows anti-inflammatory activity in macrophages and acute arthritis in vivo.” Int Immunopharmacol. 2013 Jun;16(2):160-4. doi: 10.1016/j.intimp.2013.03.028. Epub 2013 Apr 10.
[5] Shao R, Wang FJ, Lyu M, Yang J, Zhang P, Zhu Y (2019) – « Ability to Suppress TGF-β-Activated Myofibroblast Differentiation Distinguishes the Anti-pulmonary Fibrosis Efficacy of Two Danshen-Containing Chinese Herbal Medicine Prescriptions. » Front Pharmacol. 2019 Apr 24;10:412. doi: 10.3389/fphar.2019.00412. eCollection 2019.
[6] Luo J, Zhang L, Zhang X, Long Y, Zou F, Yan C, Zou W (2019) – « Protective effects and active ingredients of Salvia miltiorrhiza Bunge extracts on airway responsiveness, inflammation and remodeling in mice with ovalbumin-induced allergic asthma. » Phytomedicine. 2019 Jan;52:168-177. doi: 10.1016/j.phymed.2018.09.170. Epub 2018 Sep 17.
[7] Zhang Y, Lu W, Zhang X, Lu J, Xu S, Chen S, Zhong Z, Zhou T, Wang Q, Chen J, Liu P (2019) – “Cryptotanshinone protects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways.” Pharmacol Res. 2019 Jun 7:104307. doi: 10.1016/j.phrs.2019.104307.
[8] Jiang Y, You F, Zhu J, Zheng C, Yan R, Zeng J (2019) – “Cryptotanshinone Ameliorates Radiation-Induced Lung Injury in Rats.” Evid Based Complement Alternat Med. 2019 Feb 20;2019:1908416. doi: 10.1155/2019/1908416. eCollection 2019.
[9] Tang Y, Chen Y, Chu Z, Yan B, Xu L (2014) – “Protective effect of cryptotanshinone on lipopolysaccharide-induced acute lung injury in mice.” Eur J Pharmacol. 2014 Jan 15;723:494-500. doi: 10.1016/j.ejphar.2013.10.019. Epub 2013 Oct 24.
[10] Tao S, Zheng Y, Lau A, Jaramillo MC, Chau BT, Lantz RC, Wong PK, Wondrak GT, Zhang DD (2013) – “Tanshinone I activates the Nrf2-dependent antioxidant response and protects against As(III)-induced lung inflammation in vitro and in vivo.” Antioxid Redox Signal. 2013 Nov 10;19(14):1647-61. doi: 10.1089/ars.2012.5117. Epub 2013 Mar 21.
[11] Gao H, Huang L, Ding F, Yang K, Feng Y, Tang H, Xu QM, Feng J, Yang S (2018) – “Simultaneous purification of dihydrotanshinone, tanshinone I, cryptotanshinone, and tanshinone IIA from Salvia miltiorrhiza and their anti-inflammatory activities investigation.” Sci Rep. 2018 May 31;8(1):8460. doi: 10.1038/s41598-018-26828-0.
[12] Buyanravjikh S, Han S, Lee S, Jeong AL, Ka HI, Park JY, Boldbaatar A, Lim JS, Lee MS, Yang Y (2018) – “Cryptotanshinone inhibits IgE‑mediated degranulation through inhibition of spleen tyrosine kinase and tyrosine‑protein kinase phosphorylation in mast cells.” Mol Med Rep. 2018 Jul;18(1):1095-1103. doi: 10.3892/mmr.2018.9042. Epub 2018 May 22.
[13] Cao SG, Chen R, Wang H, Lin LM, Xia XP (2018) – “Cryptotanshinone inhibits prostaglandin E2 production and COX-2 expression via suppression of TLR4/NF-κB signaling pathway in LPS-stimulated Caco-2 cells.” Microb Pathog. 2018 Mar;116:313-317. doi: 10.1016/j.micpath.2017.12.027. Epub 2018 Jan 17.
[14] Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC, Santamaria R, Irace C, De Feo V, Calignano A, Mascolo N, Bifulco G (2018) – “Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer's disease.” Pharmacol Res. 2018 Mar;129:482-490. doi: 10.1016/j.phrs.2017.11.018. Epub 2017 Nov 20.
[15] Ma S, Zhang D, Lou H, Sun L, Ji J (2016) – “Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages.” J Ethnopharmacol. 2016 Jul 21;188:193-9. doi: 10.1016/j.jep.2016.05.018. Epub 2016 May 10.
[16] Li X, Lian LH, Bai T, Wu YL, Wan Y, Xie WX, Jin X, Nan JX (2011) – “Cryptotanshinone inhibits LPS-induced proinflammatory mediators via TLR4 and TAK1 signaling pathway.” Int Immunopharmacol. 2011 Nov;11(11):1871-6. doi: 10.1016/j.intimp.2011.07.018. Epub 2011 Aug 9.
[17] Tang J, Zhou S, Zhou F, Wen X (2019) – « Inhibitory effect of tanshinone IIA on inflammatory response in rheumatoid arthritis through regulating β-arrestin 2. » Exp Ther Med. 2019 May;17(5):3299-3306. doi: 10.3892/etm.2019.7371. Epub 2019 Mar 12.
[18] Li G, Liu Y, Meng F, Xia Z, Wu X, Fang Y, Zhang C, Liu D (2018) – « Tanshinone IIA promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by up-regulating lncRNA GAS5. » Biosci Rep. 2018 Oct 5;38(5). pii: BSR20180626. doi: 10.1042/BSR20180626. Print 2018 Oct 31.
[19] Zhang S, Huang G, Yuan K, Zhu Q, Sheng H, Yu R, Luo G, Xu A (2017) – « Tanshinone IIA ameliorates chronic arthritis in mice by modulating neutrophil activities. » Clin Exp Immunol. 2017 Oct;190(1):29-39. doi: 10.1111/cei.12993. Epub 2017 Jul 3.
[20] Jia PT, Zhang XL, Zuo HN, Lu X, Li L (2017) – « Articular cartilage degradation is prevented by tanshinone IIA through inhibiting apoptosis and the expression of inflammatory cytokines. » Mol Med Rep. 2017 Nov;16(5):6285-6289. doi: 10.3892/mmr.2017.7340. Epub 2017 Aug 23.
[21] Jie L, Du H, Huang Q, Wei S, Huang R, Sun W (2014) – « Tanshinone IIA induces apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis via blockade of the cell cycle in the G2/M phase and a mitochondrial pathway. » Biol Pharm Bull. 2014;37(8):1366-72. Epub 2014 Jun 11.
[22] Sun HN, Luo YH, Meng LQ, Piao XJ, Wang Y, Wang JR, Wang H, Zhang Y, Li JQ, Xu WT, Liu Y, Zhang Y, Zhang T, Han YH, Jin MH, Shen GN, Zang YQ, Cao LK, Zhang DJ, Jin CH (2019) – “Cryptotanshinone induces reactive oxygen species‑mediated apoptosis in human rheumatoid arthritis fibroblast‑like synoviocytes.” Int J Mol Med. 2019 Feb;43(2):1067-1075. doi: 10.3892/ijmm.2018.4012. Epub 2018 Dec 3.
[23] Ji Q, Qi D, Xu X, Xu Y, Goodman SB, Kang L, Song Q, Fan Z, Maloney WJ, Wang Y (2018) – “Cryptotanshinone Protects Cartilage against Developing Osteoarthritis through the miR-106a-5p/GLIS3 Axis.” Mol Ther Nucleic Acids. 2018 Jun 1;11:170-179. doi: 10.1016/j.omtn.2018.02.001. Epub 2018 Feb 8.
[24] Feng Z, Zheng W, Li X, Lin J, Xie C, Li H, Cheng L, Wu A, Ni W (2017) – “Cryptotanshinone protects against IL-1β-induced inflammation in human osteoarthritis chondrocytes and ameliorates the progression of osteoarthritis in mice.” Int Immunopharmacol. 2017 Sep;50:161-167. doi: 10.1016/j.intimp.2017.06.017. Epub 2017 Jun 27.
[25] Wang Y, Zhou C, Gao H, Li C, Li D, Liu P, Huang M, Shen X, Liu L (2017) – “Therapeutic effect of Cryptotanshinone on experimental rheumatoid arthritis through downregulating p300 mediated-STAT3 acetylation.” Biochem Pharmacol. 2017 Aug 15;138:119-129. doi: 10.1016/j.bcp.2017.05.006. Epub 2017 May 16.
[26] Wang Y, Wang S, Li Y, Jiang J, Zhou C, Li C, Li D, Lu L, Liu P, Huang M, Shen X (2015) – “Therapeutic effect of Cryptotanshinone on collagen-induced arthritis in rats via inhibiting nuclear factor kappa B signaling pathway.” Transl Res. 2015 Jun;165(6):704-16. doi: 10.1016/j.trsl.2014.12.004. Epub 2014 Dec 31.
[27] Zheng FL, Chang Y, Jia XY, Huang M, Wei W (2011) – “Effects and mechanisms of Cryptotanshinone on rats with adjuvant arthritis.” Chin Med J (Engl). 2011 Dec;124(24):4293-8.
[28] Ames-Sibin AP, Barizão CL, Castro-Ghizoni CV, Silva FMS, Sá-Nakanishi AB, Bracht L, Bersani-Amado CA, Marçal-Natali MR, Bracht A, Comar JF (2018) – « β-Caryophyllene, the major constituent of copaiba oil, reduces systemic inflammation and oxidative stress in arthritic rats. » J Cell Biochem. 2018 Dec;119(12):10262-10277. doi: 10.1002/jcb.27369. Epub 2018 Aug 21.
[29] Daily JW, Yang M, Park S (2016) – « Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. » J Med Food. 2016 Aug;19(8):717-29. doi: 10.1089/jmf.2016.3705. Review.
[30] Oliviero F, Scanu A, Zamudio-Cuevas Y, Punzi L, Spinella P (2018) – « Anti-inflammatory effects of polyphenols in arthritis. » J Sci Food Agric. 2018 Mar;98(5):1653-1659. doi: 10.1002/jsfa.8664. Epub 2017 Oct 9. Review.
[31] Tang L, He S, Wang X, Liu H, Zhu Y, Feng B, Su Z, Zhu W, Liu B, Xu F, Li C, Zhao J, Zheng X, Lu C, Zheng G (2018) – “Cryptotanshinone reduces psoriatic epidermal hyperplasia via inhibiting the activation of STAT3.” Exp Dermatol. 2018 Mar;27(3):268-275. doi: 10.1111/exd.13511.
[32] Buyanravjikh S, Han S, Lee S, Jeong AL, Ka HI, Park JY, Boldbaatar A, Lim JS, Lee MS, Yang Y (2018) – « Cryptotanshinone inhibits IgE‑mediated degranulation through inhibition of spleen tyrosine kinase and tyrosine‑protein kinase phosphorylation in mast cells. » Mol Med Rep. 2018 Jul;18(1):1095-1103. doi: 10.3892/mmr.2018.9042. Epub 2018 May 22.
[33] Li YL, Du ZY, Li PH, Yan L, Zhou W, Tang YD, Liu GR, Fang YX, Zhang K, Dong CZ, Chen HX (2018) – « Aromatic-turmerone ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. » Int Immunopharmacol. 2018 Nov;64:319-325. doi: 10.1016/j.intimp.2018.09.015. Epub 2018 Sep 19.
[34] Hung CH, Wang CN, Cheng HH, Liao JW, Chen YT, Chao YW, Jiang JL, Lee CC (2018) – « Baicalin Ameliorates Imiquimod-Induced Psoriasis-Like Inflammation in Mice. » Planta Med. 2018 Oct;84(15):1110-1117. doi: 10.1055/a-0622-8242. Epub 2018 May 15.
[35] Li Y, Shi S, Gao J, Han S, Wu X, Jia Y, Su L, Shi J, Hu D (2016) – “Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.” Biomed Pharmacother. 2016 May;80:80-86. doi: 10.1016/j.biopha.2016.03.006. Epub 2016 Mar 17.
[36] Shi J, Wang H, Guan H, Shi S, Li Y, Wu X, Li N, Yang C, Bai X, Cai W, Yang F, Wang X, Su L, Zheng Z, Hu D (2016) – “IL10 inhibits starvation-induced autophagy in hypertrophic scar fibroblasts via cross talk between the IL10-IL10R-STAT3 and IL10-AKT-mTOR pathways.” Cell Death Dis. 2016 Mar 10;7:e2133. doi: 10.1038/cddis.2016.44.